
1CISC 121, winter 2013, guest lectures

Topic: Numerical Computation
Good news: computers are really fast at arithmetic!

Bad news: Computer arithmetic is not exact!
Good enough much of the time, but not always.
Must understand shortcomings and how to cope with them.

2CISC 121, winter 2013, guest lectures

computer memory & devices (disks, etc.):
 lots of binary digits (bits) – each 0 or 1
integers, floats, Strings, lists, etc. all made up of bits
encoding schemes translate data to & from sequences of bits

Computer Storage

bits grouped into sets of 8
8 bits = 1 byte

Most numeric types: set number of bits used.
If that's not enough bits: problems!

3CISC 121, winter 2013, guest lectures

How Integers are Represented
integer = sequence of bits, interpreted as a binary number (base 2)

Example:

2110 = 101012

2x101 1x100 1x24 0x23 1x22 0x21 1x20

Python ints are usually 32 bits long
one bit used for sign
so range is -231 to 231-1

translation is exact – no accuracy lost going back & forth

4CISC 121, winter 2013, guest lectures

Integer Overflow or Underflow
Range of values that will fit in a 32-bit int: -231 to 231-1
That's -2147483648 to 2147483647
Trying to store a value that's too big: overflow
a value that's too small: underflow

Other languages (& older versions of Python):
Overflow/underflow leads to errors and/or bad results

Python 2.1:
>>> 9999**8
Traceback (most recent call last):
 File "<stdin>", line 1, in ?
OverflowError: integer exponentiation

5CISC 121, winter 2013, guest lectures

Python long type
Python has another integer type: long
Represents integer values with no restrictions on size.
(representation: list of integers or digits?)
No overflow/underflow; always stores exact values.

Since Python 2.2, if an int overflows Python converts the result
to a long:

>>> 9999**8
99920027994400699944002799920001L

Promised in later versions of Python: No distinction between
int and long.

6CISC 121, winter 2013, guest lectures

Conclusion: Integers in Python
Arithmetic with integers in Python will always be exact.
The result may be an int or a long.

But don't get in the habit of assuming this for every language!

7CISC 121, winter 2013, guest lectures

The Ariane 5 Explosion

June 4, 1996
http://www.around.com/ariane.html
http://youtu.be/gp_D8r-2hwk

8CISC 121, winter 2013, guest lectures

Recall Scientific Notation (base 10):

120,000 = .12 x 106

Floating Point (Decimal)

Conventions:
• no digits before the decimal point
• mantissa never starts with zero

mantissa

exponent

If a number obeys these conventions it is normalized

9CISC 121, winter 2013, guest lectures

Floating Point (Binary)
Computer uses similar binary notation to represent floating point

numbers

2110 = 101012 = .101012 x 2101

To store floating point number on a computer:
mantissa
exponent
one extra bit for sign (+/-)

mantissa: 10101
exponent: 5 (101 in binary)
binary convention: first digit always 1

10CISC 121, winter 2013, guest lectures

Most Python implementations use 8 bytes to represent a
floating-point number:

1 bit for sign
52 bits for mantissa
11 bits for exponent
total: 64 bits = 8 bytes

The Standard Floating-Point Representation

= approx. 15 decimal digits

Warning: Some Python implementations may use a slightly
different scheme.

Floating-point results will vary.
These slides assume the above scheme.

11CISC 121, winter 2013, guest lectures

How does a computer represent 14.375?

Example

8
1

4
1248375.14 ++++=

= 1110.0112

= .1110011 x 24

So 14.375 represented as:
mantissa = 1110011
exponent = 100
sign = positive

12CISC 121, winter 2013, guest lectures

Any computer has only a finite number of bits for mantissa
Rest are truncated.

Roundoff Error

Example: hypothetical small computer, 6 bits for mantissa
want to represent 14.37510 = .1110011 x 24

Exact representation needs 7 bits for mantissa.
We only have 6, so we truncate to .111001 x 24 = 14.2510

13CISC 121, winter 2013, guest lectures

Previous Example: exact answer was 14.375
Computer got 14.25

Categorizing Errors

Absolute Error: | exact value - computer value |
In this example, absolute error is .125

Relative Error:
valueexact

valuecomputervalueexact −

In this example, relative error is .125 / 14.375 = .0087 = .87%

same as:
valueexact

errorabsolute

14CISC 121, winter 2013, guest lectures

Some decimal fractions can't be represented exactly in binary

Decimal -> Binary Problems

Example: 0.1 = 1/10
As a binary number: .000 1100 1100 1100

With 52 bits for mantissa, you can get very close
but it's still not exact

Seems close enough, but what if you are adding many numbers,
all with very small errors like this?

Errors can accumulate and become significant

>>> 1/10.0
0.10000000000000001

With 52 bits for mantissa, you can get very close
but it's still not exact

15CISC 121, winter 2013, guest lectures

>>> sum = 0.0
>>> for i in range(0,1000):

sum += 0.1

>>> sum
99.999999999998593

Python Examples

>>> for i in range(0,10000000):
sum += 0.1

>>> sum
1111099.9998858953

16CISC 121, winter 2013, guest lectures

Patriot Missile Failure

February 25, 1991
http://www.ima.umn.edu/~arnold/disasters/patriot.html
http://ta.twi.tudelft.nl/users/vuik/wi211/disasters.html

17CISC 121, winter 2013, guest lectures

To discuss how errors accumulate, we will use a hypothetical
computer that stores numbers in decimal.

Makes arithmetic much easier and principles are the same.

Back to Decimal

hypothetical computer uses 3 digits for mantissa
rounds off extra digits

to represent 12.37:
normalize so no digits before decimal: .1237 x 102

round off so only 3 digits: .124 x 102

18CISC 121, winter 2013, guest lectures

Example: 5.63 + 6.81
Exact answer is 12.44

Adding Numbers of Similar Size

Representation on our hypothetical computer:
 .563 x 101
+.681 x 101

1.244 x 101

Normalize: .1244 x 102

We only have 3 digits, so round: .124 x 102 = 12.4

Absolute Error = .04 Relative Error: .04/12.44 = 0.32%

19CISC 121, winter 2013, guest lectures

Example: 563 + 4.32 Exact answer is 567.32

Adding Numbers of Different Sizes

Representation on our hypothetical computer:
 .563 x 103
+.432 x 101

Before we can add, we must line up decimal points:
both numbers must have same exponent

Un-normalize .432 x 10 so that its exponent is 3: .00432 x 103
Our computer only allows 3 digits, so round: .004 x 103

 .563 x 103
+.004 x 103

 .567 x 103 = 567 Error is .32, or .06%

20CISC 121, winter 2013, guest lectures

When you add a small number to a much larger one, you lose
some of the last digits of the smaller number

Another Example

If the numbers are different enough, you may lose the small
one altogether.

Example: 5630 + 4.32 Exact answer is 5634.32

 .563 x 10
4

+.432 x 101

 .563 x 104
+.000 x 104

 .563 x 104

21CISC 121, winter 2013, guest lectures

>>> big = 1E30
>>> small = 1E10
>>> big+small
1e+030
>>> (big+small) == big
True

Example in Python

22CISC 121, winter 2013, guest lectures

usual math fact: a + (b + c) = (a + b) + c

Order Matters

Not always true for computer arithmetic!

Example: 1000 + 1 + 2 + 3 + 4. Exact answer: 1010

Sum left to right: 1000 + 1 = 1000
 1000 + 2 = 1000
 1000 + 3 = 1000
 1000 + 4 = 1000 Error: 10

Sum right to left: 4 + 3 + 2 + 1 = 10
 10 + 1000 = 1010. Error: 0

In general, works best to add from smallest to largest.

On our hypothetical 3-digit decimal computer:

23CISC 121, winter 2013, guest lectures

How do computers calculate functions such as sine, cosine, exp?
One way: infinite series. Derived using calculus.

Infinite Series

Example:
!9!7!5!3

)sin(
9753

−+−+−= xxxx
xx

Meaning: If you add up this sum "forever", you get the exact value
of sin(x).

Alternately: You can get as close to the exact value of sin(x) as
you want by adding up enough terms of this series.

Both of the above are true with "real" arithmetic –
not computer arithmetic.

Question: in what order should you add up the terms in this series?

24CISC 121, winter 2013, guest lectures

two ways to calculate ln(2):

Old Final Exam Question

...
4

1

3

1

2

1
1)2ln(+−+−=

()

+

+

+

+= ...
3
1

7
1

3
1

5
1

3
1

3
1

3
1

22ln
753

Both are mathematically correct.
Which would work best on a computer?

25CISC 121, winter 2013, guest lectures

Computer representations also have limits on size of exponents.

Overflow

Let's say hypothetical computer allows exponents from –5 to 5.

Add 6 x 104 + 7 x 104:

 .600 x 105
+.700 x 105

1.300 x 105

Answer normalizes to .130 x 106 – exponent is too big.
This is overflow.

Different languages handle it different ways.
In Python: OverflowError

26CISC 121, winter 2013, guest lectures

 try:
 power = 100
 while True:
 x = 10.0**power
 print "power:", power, "x:", x
 power += 1
 except OverflowError:
 print "overflow with power =", power

Python Example

Output:
power: 100 x: 1e+100
power: 101 x: 1e+101
power: 102 x: 1e+102

power: 306 x: 1e+306
power: 307 x: 1e+307
power: 308 x: 1e+308
overflow with power = 309

27CISC 121, winter 2013, guest lectures

Similar to overflow: with hypothetical decimal computer,
exponent can't be less than –5.

Underflow

(.123 x 10-5) / 10 = .123 x 10-6

Exponent is too small: result is zero.

In Python: no exception for underflow.
Result is zero.

28CISC 121, winter 2013, guest lectures

 n = 1.0
 while n > 0.0:
 n = n / 10.0
 print n
 if n == 0.0:
 print "n is exactly zero"
 else:
 print "n is close to zero"

Python Example

Last lines of output:
9.98012604599e-322
9.88131291682e-323
9.88131291682e-324
0.0
n is exactly zero

29CISC 121, winter 2013, guest lectures

Other languages (Java, Turing) specify exact encoding scheme
for numeric types and rules for arithmetic

A Java program should yield the same numeric results on every
computer

Advantage: portability

Arithmetic and Portability
Many languages (Python, C) let writer of interpreter / compiler

choose scheme for representing numbers.
Python programs may yield different numeric results on

different computers
Advantage: speed -- can pick scheme that matches computer

hardware.

