
Orderings

We started our study of orderings by thinking about tasks involved in preparing for a visit

from your mother (or someone else equally worthy of impressing). Here’s a sample list of

tasks:

Cook dinner

Put on clean clothes

Clean the kitchen sink

Clean the bathroom

Gather up scattered clothes

Make the bed

Sweep the floor

Do the laundry

Hide the evidence of wild partying

Buy cleaning supplies

Clean the fridge

Set the table

Buy food

Some of these tasks are unrelated, while others have a definite “this can’t be done after that”

relationship. We can arrange them in a diagram like this:

Do laundrySweep

Hide party
evidence

Buy
food

Clean the
fridge

Gather scattered
clothes

Buy cleaning
supplies

Put on
Clean clothes

Set table Make bed

Clean the
kitchen sink

Clean the
bathroom

Cook dinner

There are important things to understand about this diagram. First, the exact placement of

the items is not critical – except that the lines between the items cannot be horizontal. A line

which goes upwards from to indicates the relation “ cannot be done after ”. We could

indicate the same property by putting arrow-heads, but the “all lines go upwards, not

downwards” convention works perfectly well.

If we think of these activities as a set, what we are doing is defining a relation on this set. A

relation, of course, consists of a set of ordered pairs. This particular relation would contain

pairs like (“Buy food”, “Cook dinner”) and (“Sweep”,”Put on clean clothes”)

It is tempting to think that the relation we are defining is “must be done before” but we are

actually going to stick with “cannot be done after” . Clearly it makes sense to say ‘”Buy

cleaning supplies” cannot be done after “Clean the fridge” ‘ etc.

Note that there are many other related pairs that are implicit in this situation. For example,

the “cannot be done after” relation must contain the pairs (“Buy cleaning supplies”, “Cook

dinner”) and (“Gather scattered clothes”, “Put on clean clothes”) and many more.

Also, note that it is true to say “ cannot be done after ” for all . So the pair

(“Sweep”,”Sweep”) must be in the relation … along with all other () pairs.

(Also note that as a curler, I have to attempt to work the phrase “Sweep, sweep” into as many

contexts as I can.)

Finally, observe that if and are different activities in this set and the pair () is in the

relation (ie. “ cannot be done after ”) , then it is not possible to say “ cannot be done after

” … because that would make it impossible to do both and .

The last few paragraphs tell us that this relation is transitive, reflexive and anti-symmetric.

We will see that this is not accidental.

Let’s look at another example or two.

Let and let = the set of all subsets of

Ie

Consider the “is a subset of” relation on . We can represent this relation by the same type

of diagram as we used above:

Once again we need to be sure we understand exactly what is meant by this diagram. Each

upward line connects a pair that satisfy the “is a subset of” relation. For example,

Once again, there are lines missing from this diagram. For example but the

diagram does not contain a line to indicate this … we will discuss why not after the next

example.

It is worth noting that the relation is reflexive, transitive and anti-symmetric … just like

the “cannot be done after” relation.

A final (for now) example:

Let

and let be the “divides” relation on :

As with the other examples, we see that R is reflexive, transitive and anti-symmetric. We can

represent this relation with a diagram like this:

As usual in these diagrams, a line from up to indicates that … ie that

Also, as in the earlier examples, there are some ordered pairs in the relation (such as)

that are not represented by lines in the diagram.

Now let’s look at the common properties of the three examples we have illustrated. Each of

them consists of a set and a relation , where has certain properties:

- reflexive –

- transitive – if and then

- anti-symmetric – for any distinct values and , and cannot both be in

R

We call such a relation a Partial Ordering, or sometimes just a Partial Order. We use the

notation to mean that P is a partial ordering consisting of the set and the

relation . We also refer to this as a partially ordered set, sometimes reduced to poset.

Why this name? Because the relation effectively puts the elements of S into some kind of

order, but it doesn’t necessarily provide ordering information about every pair of values in S.

For example, there is no ordering information about “Clean the fridge” and “Do the

laundry”. Neither one “cannot be done after” the other. Similarly is not a subset of

 and is not a subset of , and neither nor is true.

Now, about those diagrams. They are called Hasse Diagrams. There’s nothing really

complicated or hard to understand about them – they are just a convenient way to represent

posets. The goal when constructing a Hasse diagram is to provide complete information

about the poset in the simplest manner, so we leave out any details that are either obvious or

deducible. Remember that we know three things about the relation in a poset: it is reflexive,

transitive and anti-symmetric. The diagrams are based on these principles:

(a) We will use the word “vertex” to generically denote the objects in the diagram.

Each distinct object in is represented by a vertex.

(b) Placement of vertices is irrelevant except that if and , the vertex

for must be vertically higher in the diagram than the vertex for . This cannot lead

to contradiction because we know is anti-symmetric: if , then we cannot have

both and in

(c) Lines (which we will often refer to as “edges”) connect vertices that form ordered

pairs in . Because of Rule (b), there is no ambiguity about the meaning of the edges.

If an edge joins and in the diagram then

- if is higher in the diagram than , then .

- if is higher in the diagram than , then

- there is no third option: if and are related and , they cannot be at the

same vertical height in the diagram (because of Rule (b))

(d) We never include an edge that joins a vertex to itself, even though

. We know every vertex is related to itself because is reflexive

(has to be reflexive because we are dealing with a poset) – so we don’t need edges to

remind us of this.

(e) We never include an edge whose existence can be deduced from other edges that

we have included. This is where transitivity comes in. We know is transitive, so if

we know and , we can deduce . We use the same

idea in the diagram: if there is an edge from to and an edge from to , we can

deduce the fact that - we don’t need an edge to tell us that.

Fortunately this all boils down to two very simple rules:

1. If and , then the vertex for must be higher than the vertex for

2. We put an edge between and if:

 , , and such that and

So in the “divides” diagram, we don’t put an edge from to , even though ,

because and (and similarly for many other potential edges).

In the “subset” diagram, we don’t put an edge from to even though ,

because and (and similarly for many other potential edges).

It should be clear that we can construct a Hasse diagram from every poset and that no matter

how we arrange the vertices, the edges will be the same. Also, from any Hasse diagram we

can reconstruct the corresponding poset.

Let’s look at another example. This poset is defined using the ``refines'' relationship between

partitions of a set:

Definition: a partition of a set is a collection of subsets such that each element of the set is in

exactly one of the subsets. For example, if then

 is a partition of ... one of many.

(Partitions are crucially important in software design – for example, we may have a collection

of methods and objects that need to be grouped together into modules of a software system –

each way of doing that is a different partition of the collection. Partitions are also essential in

the field of data analytics. When faced with a huge amount of data, a common task is to

subdivide the data into meaningful groups – sometimes called clusters – of similar items.

Each such subdivision is a partition of the original data set.)

The number of partitions of a set with elements grows very quickly as gets large. In fact

the question “How many different partitions are there of a set of size ?” is far beyond the

scope of this course – but it is a fascinating topic and I encourage you to research it.

We are going to focus on a relation between partitions of a set. If and are partitions of

the same set, then we say refines if each subset in is a subset of a subset in

In notation, refines if such that

If that sentence contained the word “subset” too many times, here is what it means:

refines if each subset that belongs to can be formed by joining together one or more

subsets of . Equivalently, refines if the subsets that belong to can be formed by

splitting apart some or all of the subsets that belong to

For example, let . Let = and =

 Here refines

Another example: let = {all species of animal life on Earth}. Let = { {all mammals} , {all

non-mammals} } and = { {all mammals found only in Australia} , {all mammals that are

not found only in Australia} , {all non-mammals} } . Here refines

One more: let

Let and

 Here refines

It should be clear that for any set S, “refines” is a relation defined on the set of all partitions of

S. For any two partitions and we can determine whether refines , or vice versa,

or neither.

Note that since every set is a subset of itself, every partition is a refinement of itself.

We can use a simple notation to represent partitions – we just use / to separate the sets instead

of all those { and } , and we put square brackets on the outside. Using this notation, the

partitions in the first example above become = [a,c / d,f / b / e] and = [a,c / b,d,e,f]

As an exercise, prove that P = (set of all partitions of a finite, non-empty set S,”refines”) is a

partial order.

Here is the Hasse

Diagram for this

poset when S =

{1,2,3,4}.

This Hasse diagram is pretty dense with edges – you can see how difficult it would be to

understand if we included all the implicit edges as well.

Now consider this Hasse diagram

It represents the partial order

We don’t have to have a mathematical interpretation of the relation in order to work out the

partial order associated with the Hasse diagram – it just has to be reflexive, transitive and

anti-symmetric.

