
Orderings

We started our study of orderings by thinking about tasks involved in preparing for a visit 

from your mother (or someone else equally worthy of impressing).  Here’s a sample list of 

tasks:

Cook dinner

Put on clean clothes

Clean the kitchen sink

Clean the bathroom

Gather up scattered clothes

Make the bed

Sweep the floor

Do the laundry

Hide the evidence of wild partying

Buy cleaning supplies

Clean the fridge

Set the table

Buy food

Some of these tasks are unrelated, while others have a definite “this can’t be done after that” 

relationship.  We can arrange them in a diagram like this:
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There are important things to understand about this diagram.  First, the exact placement of 

the items is not critical – except that the lines between the items cannot be horizontal.  A line 

which goes upwards from  to  indicates the relation “  cannot be done after ”.  We could 

indicate the same property by putting arrow-heads, but the “all lines go upwards, not 

downwards” convention works perfectly well.

If we think of these activities as a set, what we are doing is defining a relation on this set.  A 

relation, of course, consists of a set of ordered pairs.  This particular relation would contain 

pairs like (“Buy food”, “Cook dinner”)   and (“Sweep”,”Put on clean clothes”)

It is tempting to think that the relation we are defining is “must be done before” but we are 

actually going to stick with “cannot be done after” .  Clearly it makes sense to say ‘”Buy 

cleaning supplies” cannot be done after “Clean the fridge” ‘ etc.

Note that there are many other related pairs that are implicit in this situation.  For example, 

the “cannot be done after” relation must contain the pairs (“Buy cleaning supplies”, “Cook 

dinner”) and (“Gather scattered clothes”, “Put on clean clothes”)  and many more.

Also, note that it is true to say “  cannot be done after ”  for all  .   So the pair 

(“Sweep”,”Sweep”) must be in the relation … along with all other ( ) pairs.

(Also note that as a curler, I have to attempt to work the phrase “Sweep, sweep” into as many 

contexts as I can.)

Finally, observe that if  and  are different activities in this set and the pair ( ) is in the 

relation (ie.  “  cannot be done after ”) , then it is not possible to say “  cannot be done after

” … because that would make it impossible to do both  and .

The last few paragraphs tell us that this relation is transitive, reflexive and anti-symmetric.  

We will see that this is not accidental.



Let’s look at another example or two.

Let    and let   =  the set of all subsets of 

Ie  

Consider the “is a subset of” relation on   .  We can represent this relation by the same type 

of diagram as we used above:

Once again we need to be sure we understand exactly what is meant by this diagram.  Each 

upward line connects a pair that satisfy the “is a subset of” relation.  For example,

Once again, there are lines missing from this diagram.  For example  but the 

diagram does not contain a line to indicate this … we will discuss why not after the next 

example.

It is worth noting that  the    relation is reflexive, transitive and anti-symmetric … just like 

the “cannot be done after” relation.



A final (for now) example:

Let     

and let    be the “divides” relation on  :   

As with the other examples, we see that R is reflexive, transitive and anti-symmetric.  We can 

represent this relation with a diagram like this:



As usual in these diagrams, a line from  up to  indicates that  … ie that 

Also, as in the earlier examples, there are some ordered pairs in the relation (such as  ) 

that are not represented by lines in the diagram.

Now let’s look at the common properties of the three examples we have illustrated.   Each of 

them consists of a set  and a relation , where  has certain properties:

- reflexive –  

- transitive – if  and   then  

- anti-symmetric – for any distinct values  and ,  and  cannot both be in 

R

We call such a relation a Partial Ordering, or sometimes just a Partial Order.  We use the 

notation  to mean that P is a partial ordering consisting of the set  and the 

relation .  We also refer to this as a partially ordered set, sometimes reduced to poset.

Why this name?  Because the relation effectively puts the elements of S into some kind of 

order, but it doesn’t necessarily provide ordering information about every pair of values in S.

For example, there is no ordering information about “Clean the fridge” and “Do the 

laundry”.  Neither one “cannot be done after” the other.  Similarly  is not a subset of

  and  is not a subset of ,   and neither  nor   is true.



Now, about those diagrams.  They are called Hasse Diagrams.  There’s nothing really 

complicated or hard to understand about them – they are just a convenient way to represent 

posets.  The goal when constructing a Hasse diagram is to provide complete information 

about the poset in the simplest manner, so we leave out any details that are either obvious or 

deducible.  Remember that we know three things about the relation in a poset: it is reflexive, 

transitive and anti-symmetric.  The diagrams are based on these principles:

(a) We will use the word “vertex” to generically denote the objects in the diagram.  

Each distinct object in  is represented by a vertex.

(b) Placement of vertices is irrelevant except that if  and , the vertex 

for  must be vertically higher in the diagram than the vertex for .  This cannot lead 

to contradiction because we know  is anti-symmetric: if , then we cannot have 

both  and  in 

(c) Lines (which we will often refer to as “edges”) connect vertices that form ordered 

pairs in .  Because of Rule (b), there is no ambiguity about the meaning of the edges.  

If an edge joins     and   in the diagram then

- if  is higher in the diagram than , then .

- if  is higher in the diagram than , then 

- there is no third option: if  and  are related and , they cannot be at the 

same vertical height in the diagram (because of Rule (b))

(d)  We never include an edge that joins a vertex to itself, even though

. We know every vertex is related to itself because  is reflexive 

(  has to be reflexive because we are dealing with a poset) – so we don’t need edges to 

remind us of this.

(e) We never include an edge whose existence can be deduced from other edges that 

we have included.  This is where transitivity comes in.  We know  is transitive, so if 

we know   and , we can deduce .  We use the same 

idea in the diagram: if there is an edge from  to   and an edge from  to ,  we can 

deduce the fact that  - we don’t need an edge to tell us that.



Fortunately this all boils down to two very simple rules:

1.  If  and , then the vertex for  must be higher than the vertex for 

2.  We put an edge between  and  if:

      ,   ,   and    such that  and 

So in the “divides” diagram, we don’t put an edge from  to , even though , 

because  and    (and similarly for many other potential edges).

In the “subset” diagram, we don’t put an edge from  to  even though  , 

because   and    (and similarly for many other potential edges).

It should be clear that we can construct a Hasse diagram from every poset and that no matter 

how we arrange the vertices, the edges will be the same.   Also, from any Hasse diagram we 

can reconstruct the corresponding poset.

Let’s look at another example.  This poset is defined using the ``refines'' relationship between 

partitions of a set:

Definition:  a partition of a set is a collection of subsets such that each element of the set is in 

exactly one of the subsets.   For example, if  then

 is a partition of  ... one of many.  

(Partitions are crucially important in software design – for example, we may have a collection 

of methods and objects that need to be grouped together into modules of a software system – 

each way of doing that is a different partition of the collection.  Partitions are also essential in 

the field of data analytics.  When faced with a huge amount of data, a common task is to 

subdivide the data into meaningful groups – sometimes called clusters – of similar items.  

Each such subdivision is a partition of the original data set.)

The number of partitions of a set with  elements grows very quickly as  gets large.  In fact 

the question “How many different partitions are there of a set of size ?” is far beyond the 

scope of this course – but it is a fascinating topic and I encourage you to research it.



We are going to focus on a relation between partitions of a set.  If  and  are partitions of 

the same set, then we say  refines  if each subset in  is a subset of a subset in 

In notation,  refines  if     such that 

If that sentence contained the word “subset” too many times, here is what it means:   

refines  if each subset that belongs to  can be formed by joining together one or more 

subsets of  .  Equivalently,   refines  if the subsets that belong to  can be formed by 

splitting apart some or all of the subsets that belong to 

For example,  let  .      Let  =    and  =

   Here  refines 

Another example:  let  = {all species of animal life on Earth}.   Let  = { {all mammals} , {all 

non-mammals} }   and  = { {all mammals found only in Australia} , {all mammals that are 

not found only in Australia} , {all non-mammals} }  .   Here  refines 

One more:  let     

Let   and

    Here  refines 

It should be clear that for any set S, “refines” is a relation defined on the set of all partitions of

S.   For any two partitions  and  we can determine whether  refines , or vice versa, 

or neither.  

Note that since every set is a subset of itself, every partition is a refinement of itself.

We can use a simple notation to represent partitions – we just use / to separate the sets instead

of all those { and } , and we put square brackets on the outside.  Using this notation, the 

partitions in the first example above become    = [a,c / d,f / b / e]  and  =  [a,c / b,d,e,f]    

As an exercise, prove that P = (set of all partitions of a finite, non-empty set S,”refines”) is a 

partial order.

Here is the Hasse

Diagram for this

poset when S =

{1,2,3,4}.  



This Hasse diagram is pretty dense with edges – you can see how difficult it would be to 

understand if we included all the implicit edges as well.

Now consider this Hasse diagram

It represents the partial order    

We don’t have to have a mathematical interpretation of the relation in order to work out the 

partial order associated with the Hasse diagram – it just has to be reflexive, transitive and 

anti-symmetric.


