CISC-204* Test #4 March 22, 2005

Dr. Robin Dawes, Dr. Janice Glasgow

Student Number (Required)		
Name (Optional)		
Section (Dawe	s: A, Glasgow: B)	
This is a closed book test. You may not reinformation sheet stapled to the back of the information sheet.	2	
This is a 50 minute test.		
Please write your answers in ink. Pencil reconsidered after the test papers have b		t will not be
The test will be marked out of 40.		
Question 1	/8	
Question 2	/8	
Question 3	/12	

/12

/40

Question 4

TOTAL

QUESTION 1. 8 MARKS

State whether the claim is true or false, and **prove your answer**.

Let π be a path in a transition system model M.

If $\pi \models G F \varphi$, then φ is true infinitely many times along π

TRUE FALSE

Proof:

(Hint: To prove this is true, suppose φ is true only finitely many times along π , then try to derive a contradiction. To prove this is false, try to find a counter-example.)

QUESTION 2: 8 MARKS

... question not relevant in 2013 ...

QUESTION 3: 12 MARKS

Translate each of the following into LTL formulas: ψ

(a) The path $\ \pi$ satisfies the requirement that if φ is true in the second state of π , then ψ is true in some state in π

(b) The path π satisfies the requirement that at some point in the future, φ is true in two consecutive states.

(c) The path π satisfies the requirement that if φ is true in any state, then ψ is true in some earlier state.

QUESTION 4: 12 MARKS

Here is a model of a small system. For each of the following LTL statements, determine if the model satisfies the statement. If so, explain how you know this. If not, show a path that demonstrates that the statement is false.

 \dots 2013 \dots picture a state transition system with 4 states \dots sorry I don't have the exact system that was used on this 2005 test \dots make up your own and answer the question for your own system

(a)
$$s_0 \models (F X s) \rightarrow (F (p \land q))$$

(b)
$$s_1 = (\neg s) W (\neg F p)$$

(c)
$$s_2 \models (\neg F r) \rightarrow (G F p)$$

LTL INFORMATION

F: Some **Future** state

X: The **Next** state

G: All states (**Globally**)

U: Until

W: **Weak** Until

R: Releases

Definitions:

Let π be a path. π^i is the path starting in the i-th state in π

Let π be a path and let φ be a formula. $\pi \models \varphi$ if φ is true in the first state in π

Let s be a state in a model and let φ be a formula. $s \models \varphi$ if for every path π that starts in state s, $\pi \models \varphi$