
20191114, 20191115

Advanced Complexity Analysis

Up to this point I have described some problems as being easy and some as 

being difficult.  It’s time to put that distinction on a solid scientific footing.  We 

need to talk about different classes of problems.  

When computers first became widely available, people all over the world started

to create algorithms to solve computational problems.  It was soon recognized 

that the problems they were working on fell into two loose categories: ones that 

were easy to solve with fast algorithms, and ones for which it seemed to be 

impossible to find any efficient algorithm at all.

Researchers looked for some way to formalize these concepts.  The concept of 

computational complexity was applied, and it turned out that the “easy” 

problems can all be solved in polynomial time – ie they have algorithms that run

in O( ) time for some constant .  None of the hard problems have polynomial 

time algorithms at all, even for very large values of .  That could be because we 

are not smart enough to find fast algorithms for these problems, or it could be 

because such algorithms don’t exist.  How can we tell?

The study of the difficulty of problems experienced an enormous breakthrough 

in the early 1970’s.  Cook and Levin, working independently and virtually 

simultaneously, proved a theorem that revolutionized our understanding of the 

relationship between easy problems and hard problems, and also provided us 

with an immensely powerful tool for identifying computationally hard 

problems.  But we need to work up to that ...



Definition:  a problem X is a decision problem if 

                         - the answer to any instance of X is either Yes or No

                         - the answer to any instance of X is completely determined by the 

details of the instance

For example, let X = "Does the set S contain the value 3?"  where S is a well-

defined set such as {1, 10, 7, 3, 8}.   X is a decision problem.

Another example:  let X = "Does program P enter an infinite loop when the input

is I?".  This is the well-known Halting Problem, and it is a decision problem 

(even though we know there is no algorithm that can solve it for all possible 

programs and inputs).  This illustrates the important point that not all decision 

problems are created equal!

Another example:  let X = "Will this coin land Heads-up the next time it is tossed

after this question is asked?".  Here the answer is either Yes or No, but the 

answer is not determined by the details of the instance - tossing the coin is a 

random event and its outcome cannot be predicted with 100% accuracy (unless 

the coin is the same on both sides, or unless the universe is completely 

deterministic).  This X is not a decision problem.

Definition: The class  is the set of all decision problems that can be solved (i.e. 

the complete details of the solution, if there is one, can be found) using a "real" 

computer in O( ) time, where k is constant for each problem.

For example, the problem "Given a graph on n vertices, are there three vertices 

that are all mutually adjacent?" can be solved by an algorithm that examines 

each of the  possible solutions.  Since such an algorithm clearly runs in O( )

time, this problem is in the class .

Definition: The class :  This class is a bit more complex than    .  First, we 

distinguish between solving a problem - actually finding the answer - and 



verifying a solution - checking the details to make sure they are correct.  For 

example, if the problem is "Given a set of integers, is the number 17 in the set?" 

the answer might be "Yes, it is in position 5 in the set".  To verify this we would 

check the appropriate value to see if it really is 17.



Second, we imagine a type of computer, called a Non-Deterministic Turing 

Machine (this is where the  in  comes from) which has the magic ability to

guess the right answer to any decision problem, and which will provide us with 

the details if the answer is Yes.  Once the NDTM has performed this magic trick,

it relapses back into being a normal computer.

Now we can define .   is the set of all decision problems that can be 

solved by a NDTM which verifies all Yes answers in O( ) time, where k is 

constant for each problem.

Equivalently (and perhaps more comprehensibly),   is the set of all decision 

problems for which if someone tells you the answer, if the answer is No you 

don't have to do anything, but if the answer is Yes and they give you the details 

of the answer, you can verify the correctness of that answer in polynomial time.

The first response when one hears about the class  is often "What is the 

point of talking about problems that are solved on imaginary magical 

computers?"

We'll answer that question in two steps.  First, it is important to see that   is 

contained in  .  If we have an algorithm that correctly solves a problem and 

provides details of the solution, then we could use that same algorithm to verify 

the correctness of the Yes/No solution "guessed" by an NDTM.

Second, it fairly quickly became apparent that most of those “really hard” 

problems I have alluded to – the ones that nobody could find good algorithms 

for – actually do have the property that “Yes” answers can be verified quite 

easily.  So the NDTM is a useful conceptual type of computer for discussing the 

solution of these problems.



Remember that the goal of this line of research was to find a practical way to 

distinguish between easy and hard problems.  So far all we have is an imaginary

magical computer – not very useful.  But stay with me – this all leads to a very 

practical and essential tool in modern computer science.

The question to be addressed is, are there any problems in  that are not in

?  In other words, is there any problem X such that X can be verified using an 

NDTM but X cannot be solved using a "real" computer?  It would seem that 

there absolutely must be such problems - after all, the NDTM can magically 

guess right answers to everything, and all it has to do is verify the Yes answers.  

Surely being able to do magic must give you an advantage.

If there are no such problems, then the two classes  and  are equal – which

virtually nobody believes – because if   then real computers are just as 

powerful as magic computers.

To address the problem "Does  ?" people started trying to find the most

difficult problems in  - these are surely the best candidates for problems that

in  but not in   .   By the same token, if we can prove that the most difficult 

problems in  are also in , then  .



But how can we identify the hardest problems in ?  Our measure of problem

difficulty so far has been the computational complexity of the best algorithm for 

solving the problem ... but for the problems we are interested in, we have no 

idea what the best algorithm is.  We are in the uncomfortable position of trying 

to compare the difficulty of problems that we don't know how to solve.

It turns out we can do this in a clever way.  We imagine two problems X and Y.

 We would like to show that X is "easier" than Y (or, more precisely, that X is 

"not harder" than Y).  We do this indirectly by showing that IF we could find an 

efficient algorithm for Y, this would immediately give us an efficient algorithm 

for X. 

To show this relationship between X and Y, we demonstrate that any instance of

X (i.e. any specific set of values or objects that X applies to) can be transformed 

in polynomial time into an instance of Y (i.e. a specific set of values or objects 

that Y applies to) in an answer-preserving way.  That is, if the answer to X on 

that specific set of values is YES, then the answer to Y on the transformed set of 

values is also YES (and similarly for NO).

Here's a simple example:  

:  Given a set S of n integers, does S contain the value 4?

:  Given a set S of n integers and a target integer k, does S contain the value k?

Obviously, both of these problems are so simple that we can immediately see 

good algorithms for solving them.  Ignore that for the moment - we are focusing

on the relationship between the problems.

Suppose we are given an instance of  (a specific set of integers), and suppose 

we have no idea how to solve it.  We ask "If we knew how to solve , how 

could we use that knowledge to solve ?"   



Well, if we know how to solve  for any set S and any integer k, we can write 

down an algorithm solve_ (S,k) for this problem.  Then we could create an 

algorithm for  like this:

        def solve_ (S):

            return solve_ (S,4)

Putting it formally, the instance of  is transformed into an instance of  in 

constant time simply by assigning k the value 4, and the transformation is 

answer-preserving: the call to solve_ () returns "Yes" iff the correct answer to 

the instance of  is "Yes".

This is actually the “proper” way to express what we are doing here.  Given S 

which is an instance of , we construct (S,4) which is an instance of .   We 

observe that the instance of  is constructed in constant time, and that the 

answer to (S,4)  is identical to the answer to (S).

Thus we can say that if we could solve  efficiently, then we could also solve 

efficiently.

It is also possible to turn this around: if we could solve  efficiently, we could 

also solve .  That is, any instance of  (search for k) can be easily transformed 

into an instance of  (search for 4).  In class we discussed methods for doing 

this – it’s a beneficial exercise which I recommend for anyone who was not in 

class when we discussed this.



Here's another, slightly more complex example.  Consider these problems X and

Y:

X:  Given a set S of n integers, are there more positive than negative integers in 

the set?        (NB:  X is a decision problem, and it is in  )

Y:  Given a set S of n integers, is the sum of the set positive?        (Y is also a 

decision problem, and Y is also in  )

(Once again, it is obvious that we can solve both of these problems easily.  I have

chosen simple problems for these examples so that we can focus on the 

transformation process.)

Solving X requires counting, but solving Y involves adding, so how can we 

transform an instance of X into an instance of Y?   The key insight is that 

counting is equivalent to adding 1's.  So if we transform the instance of X into an

instance of Y by replacing every positive integer by 1, and every negative 

integer by -1, then solving Y on the transformed set will give us a YES answer if 

and only if the answer to X on the original set is YES.  So our transformation is 

answer-preserving, as required ... but is it a polynomial-time transformation?

 Yes it is, because all we need to do is make a single, constant-time change to 

each element of the set - the entire transformation requires O(n) time.

Thus if we can find an efficient algorithm for Y, we will also have an efficient 

algorithm for X.

Our term for this kind of transformation is reduction.  We say X reduces to Y.

 This is confusing to many people because an intuitive interpretation of the 

word "reduce" often suggests "simplify".  Here, the reduction goes from the 

"easier" problem (X) to the "harder" or "more general" problem (Y).  

It is useful to remind ourselves exactly what we mean by X reduces to Y:  if we 

could solve Y, then we could also solve X  or we can solve X by solving Y



Reduction is NOT about:

• showing that there is an efficient algorithm for Y

• showing that there is an efficient algorithm for X

• showing that X is difficult or easy

• showing that Y is difficult or easy

Reduction IS about:

• showing that IF we could solve Y in polynomial time, THEN we could 

also solve X in polynomial time by transforming instances of X into 

instances of Y.

When we reduce problem X to problem Y, we often have no definite knowledge 

about efficient algorithms for either of the two problems.

The standard notation for reduction is  .   So for our problems above, we write 

X  Y

The next step in the argument is to observe that reduction is transitive.  If X  Y,

and Y  Z, then X  Z - the transformation now takes two steps, but it is still 

polynomial-time, and (this is crucial) it is still answer-preserving.

Now we can imagine long chains of problems linked by reduction.  The first 

problems in each chain would be quite easy, and as we move along the chains 

the problems get harder and harder.  The problems we are searching for, the 

most difficult problems in , will be at the far ends of the chains.

A natural question to ask is “Do these chains go on forever, or do they reach an 

end?”   My (very satisfying) answer is “Both.  The chains do go on forever, and 

they also reach an end.”  What I mean by this is that there is always another 

problem that we can reduce to, but the difficulty of these problems (as long as we



stay in the class  ) reaches a maximum level and stays there.

Finally, we can get back to Cook and Levin.  To describe their amazing 

discovery and its importance, we need one or two more definitions.

SAT:  SAT is a problem in  , defined as follows:  Let E be a Boolean 

expression with n literals (a literal is just a Boolean variable, possibly negated).  

Each literal may occur more than once in E.  Is there a way to assign True and 

False to the literals in E so that E is true?

Example:  Let      If we let  and ,  

evaluates to  , so  is satisfiable.

Example:  Let .   is not satisfiable ... you can verify

this for yourself.

And now at last the jewel in the crown – the most important result in the history

of the study of algorithms (which is the most important part of computer 

science ...  but maybe I’m biased):

The Cook-Levin Theorem:

    Let X be any problem in .  Then X reduces to SAT.

Reminder:  This means that for every instance of every problem in  we can 

construct a Boolean expression in polynomial time such that the original 

problem instance has answer “Yes” if and only if the Boolean expression is 

satisfiable.   



********************************

Optional expansion on the significance of Cook-Levin – skip this if you are not 

quite as excited about this as I am!   The main story picks up again after another 

row of asterisks.

It’s not remarkable that we can construct a Boolean expression that is satisfiable 

iff the problem instance has answer “Yes”.   For example, consider the extremely

simple decision problem “Given an integer value x, does x = 3?”  Since we are 

talking about an instance of this problem, we are given the value of x and we 

can convert it to binary.  Suppose x consists of just 3 bits .  Of course 3 in 

binary is 011 so we need a Boolean expression that is satisfiable iff  ,

 and 

For each of these requirements we create a Boolean clause.  If the requirement is 

satisfied we create the clause   ,  and if the requirement is not satisfied we 

create the clause   where v is a Boolean variable.  Conjoining these 

clauses with “ ” operators gives us a Boolean expression that can be satisfied iff 

x = 3.

For example, suppose x is 2.  Here , , 

The requirement    is satisfied so our first Boolean clause is  

The requirement    is satisfied so our next Boolean clause is 

The requirement   is not satisfied so our last Boolean clause is  

Our complete Boolean expression is E =  

It’s easy to see that this E is not satisfiable – it contains only one Boolean variable

so there are only two possible truth assignments: either  or .  

For each of these, E evaluates to .



Of course if x does equal 3 then the three requirements would all be satisfied so 

the Boolean expression would be E =    which is obviously 

satisfiable.

This may seem like a lot of work to establish something pretty trivial, but it’s a 

good illustration of the principle.  We used the information available in the 

instance of the problem to construct an instance of SAT, and we did it in an 

answer-preserving way.

You might want to think about how you would approach something a bit more 

complex, such as “Given two integers x and y, does ?”  You may 

assume again that x and y are 3-bit numbers.  You can consider all the possible 

pairs of x and y values that give the desired sum (eg x == 6, y == 4) and use the 

sort of expression we developed above to check the value of a variable to see if 

the given values of x and y fit any of the pairs that sum to 10.

There are just a few of these pairs :     You can 

probably see how to build a Boolean expression that is satisfiable iff x and y 

match one of these pairs.  Then you can “or” these pieces together to see if

 is true or false.  The final Boolean expression is going to be quite a 

bit longer than the Boolean expression we used for the “ ?” question.

And there’s the rub!  If we take this approach of building a Boolean expression 

by enumerating the possible ways the answer can be “Yes”, building a Boolean 

expression for each them, and then sticking them all together to get our final 

Boolean expression, we will soon encounter exponential growth in the size of 

the Boolean expression.   Any question to which the “Yes” answer can be 

triggered by some subset of a set (such as the Subset Sum Problem) would 

contain sub-expressions for testing each possible solution ... so it would have to 

have  sub-expressions.



This is what makes Cook-Levin such an astonishing, brilliant, powerful result.  

They showed that for any instance of any problem in  , we can construct a 

Boolean expression that preserves the answer, and the size of the Boolean 

expression is a polynomial function of the size of the instance of the problem.  

We don’t need an exponentially large Boolean expression to deal with 

exponentially many possible solutions.

Properly describing the Cook-Levin method for constructing the Boolean 

expression (which is completely different from the little examples I did above) 

would require a dive into formal languages and Turing Machines - there is no 

time in our course to do that.  If you are interested, I strongly encourage you to 

explore this topic.

**************************************************

Picking up where we left off ...  Cook and Levin showed that every problem in

 reduces to SAT.

This means if we could solve SAT in polynomial time then we could solve every 

problem in  in polynomial time too.  That would have a couple of 

interesting implications.  For one thing, it would mean that all of the hard 

decision problems that have defeated everyone who has attempted to find good 

algorithms for them for the last 50 years, actually do have polynomial time 

algorithms.  For another thing, it would mean   ... which means that our 

normal, real-world computers have just as much power as magical, guess-the-

right-answer-every-time Non-Deterministic computers.  Most people don’t 

believe either of these things ... and so most people believe that SAT simply 

cannot be solved in polynomial time.  

In other words, most people believe   

... but you could be the one to prove us all wrong.


