
CISC-365*

Test #1 Sample Questions

Fall 2019

Student Number (Required) ______________________

Name (Optional)________________________________

This is a closed book test. You may not refer to any resources.

This is a 50 minute test.

Please write your answers in ink. Pencil answers will be marked, but will not be

re-marked under any circumstances.

The test will be marked out of 50.

QUESTION (15 marks)

Let A and B be two sets, each containing n integers in random order.

Each of the sets is stored in an n-element array.

Create an algorithm to compute A B (that’s “A intersect B”). Your

algorithm should run in O() time.

(A note on data structures: many people are tempted to solve

problems like this using hash-tables which give O(1) expected case

search time. Unfortunately the worst case search time for a hash-

table is O(n).)

Express your algorithm in clear pseudo-code or a standard

procedural language. You may assume that sort() is a built-in

function that runs in O() time.

QUESTION (15 marks)

What is the computational complexity (ie the “big O” class) of this

algorithm?

Mystery(n):
if n <= 1:

print 1
else if n <= 100:

print n
Mystery(n-1)

else:
print n
Mystery(n/2)

QUESTION (15 marks)

Consider the Path Product Problem: Given a graph G in which every

edge is weighted with a number in the range [0 .. 1] , and given two

identified vertices A and B, find a path from A to B that maximizes

the product of the weights of the edges in the path.

For example in this graph the optimal path from A to B is A-D-B

because 0.6 * 0.5 is greater than the product of the weights in any

other path from A to B

Dijkstra’s Algorithm be adapted to solve the Path Product Problem.

Dijkstra’s Algorithm is stated on the next page, exactly as given in the

course notes. This version finds the least-weight paths from A to all

other vertices. You are not required to change it to terminate as soon

as B is reached.

Dijkstra(W, A):

Cost[A] = 0

Reached[A] = True

for each other vertex x:

Reached[x] = False

for each neighbour x of A:

Estimate[x] = Weight(A,x)

Candidate[x] = True

for all other vertices z:

Estimate[z] = infinity

Candidate[z] = False

while not finished:

find the best candidate

best_candidate_estimate = infinity

for each vertex x:

if Candidate[x] == True and Estimate[x] < best_candidate_estimate:

v = x

best_candidate_estimate = Estimate[x]

Cost[v] = Estimate[v]

Reached[v] = True

Candidate[v] = False

for each vertex y: # update the neighbours of v

if W[v][y] > 0 and Reached[y] == False:

if Cost[v] + W[v][y] < Estimate[y]:

Estimate[y] = Cost[v] + W[v][y]

Candidate[y] = True

Predecessor[y] = v

Explain how to modify this algorithm to solve the Path Product

Problem. You don’t need to copy the whole algorithm - just show the

lines that need to change.

QUESTION (15 marks)

Let A be an array of n distinct integers (n 3), arranged so that the

integers start out increasing, and then decrease. For example A

might look like this:

A = [2, 5, 7, 93, 86, 81, 77, 34, 22, 11, 9, 8, 6]

Create an algorithm that finds the largest value in A in O() time.

Your algorithm must solve all instances of the problem, not just the

one given in the example.

