CISC-365*
 Test \#1 Sample Questions
 Fall 2019

Student Number (Required) \qquad

Name (Optional) \qquad

This is a closed book test. You may not refer to any resources.
This is a 50 minute test.
Please write your answers in ink. Pencil answers will be marked, but will not be re-marked under any circumstances.

The test will be marked out of 50 .

QUESTION (15 marks)

Let A and B be two sets, each containing n integers in random order. Each of the sets is stored in an n-element array.

Create an algorithm to compute $\mathrm{A} \cap \mathrm{B}$ (that's "A intersect B"). Your algorithm should run in $\mathrm{O}(n * \log n)$ time.
(A note on data structures: many people are tempted to solve problems like this using hash-tables which give $\mathrm{O}(1)$ expected case search time. Unfortunately the worst case search time for a hashtable is $\mathrm{O}(\mathrm{n})$.)

Express your algorithm in clear pseudo-code or a standard procedural language. You may assume that sort() is a built-in function that runs in $\mathrm{O}(n * \log n)$ time.

QUESTION (15 marks)

What is the computational complexity (ie the "big O" class) of this algorithm?

Mystery(n):
if $\mathrm{n}<=1$:
print 1
else if $\mathrm{n}<=100$:
print n
Mystery(n-1)
else:
print n
Mystery(n/2)

QUESTION (15 marks)

Consider the Path Product Problem: Given a graph G in which every edge is weighted with a number in the range [0 .. 1], and given two identified vertices A and B, find a path from A to B that maximizes the product of the weights of the edges in the path.

For example in this graph the optimal path from A to B is A-D-B because $0.6^{*} 0.5$ is greater than the product of the weights in any other path from A to B

Dijkstra's Algorithm be adapted to solve the Path Product Problem.
Dijkstra's Algorithm is stated on the next page, exactly as given in the course notes. This version finds the least-weight paths from A to all other vertices. You are not required to change it to terminate as soon as B is reached.

Dijkstra(W, A):
$\operatorname{Cost}[\mathrm{A}]=0$
Reached[A] = True
for each other vertex x :

$$
\text { Reached }[\mathrm{x}]=\text { False }
$$

for each neighbour x of A :

$$
\begin{aligned}
& \text { Estimate }[\mathrm{x}]=\text { Weight }(\mathrm{A}, \mathrm{x}) \\
& \text { Candidate }[\mathrm{x}]=\text { True }
\end{aligned}
$$

for all other vertices z :

$$
\begin{aligned}
& \text { Estimate[z] = infinity } \\
& \text { Candidate[z] = False }
\end{aligned}
$$

while not finished:

```
# find the best candidate
best_candidate_estimate = infinity
for each vertex x:
    if Candidate[x] == True and Estimate[x] < best_candidate_estimate:
        v = x
        best_candidate_estimate = Estimate[x]
Cost[v] = Estimate[v]
Reached[v] = True
Candidate[v] = False
for each vertex y: # update the neighbours of v
if W[v][y] > 0 and Reached[y] == False:
        if Cost[v] + W[v][y] < Estimate[y]:
            Estimate[y] = Cost[v] + W[v][y]
            Candidate[y] = True
            Predecessor[y] = v
```

Explain how to modify this algorithm to solve the Path Product Problem. You don't need to copy the whole algorithm - just show the lines that need to change.

QUESTION (15 marks)

Let A be an array of n distinct integers ($n \geq 3$), arranged so that the integers start out increasing, and then decrease. For example A might look like this:
$A=[2,5,7,93,86,81,77,34,22,11,9,8,6]$
Create an algorithm that finds the largest value in A in $\mathrm{O}(\log n)$ time. Your algorithm must solve all instances of the problem, not just the one given in the example.

